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1. INTRODUCTION

Increasingly, problems of interior ballistics for advanced gun systems are treated as multidisciplinary
in nature, since the flow fields are stressed beyond traditional limits in physical parameters such as
pressures and temperatures. The gun internal environment for tank and artillery is by nature severe:
ranging in pressure from ambient to 500 MPa or higher; temperatures from ambient to the flame
temperature of the solid propellant up to 3500 K; acceleration of tactical projectiles with intruding
afterbodies to muzzle velocities exceeding 2500 m s71; all within the timeframe of 25 ms. However,
advanced gun systems exceed these limits in order to achieve greater muzzle kinetic energies and, at
the same time, often introduce additional complexity associated with liquid propellants and electrical
energy. For example, although the regenerative liquid propellant gun is within traditional limits in
terms of pressures and temperatures, it utilizes moving mechanical pistons to inject liquid propellant
from a reservoir into the combustion chamber. Since the pistons move, the combustion chamber
shape and volume change in time. In the electrothermal–chemical gun, electrical energy in the form
of a plasma is injected into the combustion chamber, raising the temperature at least locally to as high
as 20,000 K.

Experimental data have suggested an interaction between diverse media in the gun. For example,
pistons used in the regenerative liquid propellant gun and the flow field interact both to deform the
pistons and to influence the fluid flow from the reservoir into the combustion chamber. Break-up of
the fluid into droplets both during high-velocity injection into gas, and in regions in which a puddle of
liquid is impacted by a high-velocity jet of gas, is caused by shear stress between the liquid and the
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gas.Long-bodyprojectileswhich intrudeinto thecombustionchamber, suchasthoseusedfor kinetic
energy weapons,respond to the flow fields of electrothermal–chemical gunsand advanced charge
designs uniquely differently from the responsein traditional guns. Thus new computational
techniquesareneeded to addresscoupling problemsof interior ballisticswhich involve interaction
between diversemedia suchasgases, deformablesolidsand liquids.

The most promising computational method for the solution of interaction problems between
diverse media with complex geometries is the finite element method using formulations for
multiphase,multicomponent, compressible, reacting fluid flow with real equations of state.The
developmentof finite elementformulationsfor fluid dynamics applicationsis a researchfield that
offers significant promisefor suchdifficult problems. In this paperwe utilize thedeformable-spatial-
domain=stabilized-space–time (DST=SST) finite element formulation to study a multifluid, non-
reacting, compressibleandincompressibleflow problemin which a slightly compressiblebarotropic
liquid interacts with an incompressiblegas. We also couple the DSD=SST-based model of the
barotropic liquid with a finite element model of a linearly elastic body to study fluid–structure
interaction phenomena.

In a discontinuous-in-time space–time formulation the governing equations of the problem are
integratedin thespace–timedomain. Also, thefinite element interpolation functionsarefunctionsof
bothspatial locationandtime. Theseinterpolation functionsarediscontinuousin time but continuous
in space.Discontinuous-in-time space–timemethodswereearlierusedwith spatial domainswhich do
not changewith time.1–4

TheDSD=SSTformulation takesadvantageof the fact that thegoverning equationsareintegrated
over the space–time domain,by beingable to absorb meshdeformation automatically in problems
involving moving boundaries and interfaces. This methodwas first introduced for incompressible
flows.5 Later, a similar techniquewasdevelopedfor compressible flows.6 The DSD=SSTformulation
canbe effectively implementedon parallel supercomputers.7–9

Two types of stabilization techniquesareusedin the DSD=SSTfinite element formulations.For
compressible flows the DSD=SSTformulation, which is in the contextof conservation variables,is
stabilized using the streamline-upwind=Petrov–Galerkin (SUPG) method.The SUPG method for
incompressible flows wasfirst introducedby HughesandBrooks,10 with a detailed description of the
formulation and numerical examples given in Reference11. The SUPGmethodfor compressible
flows, in thecontext of conservation variables,wasintroducedby Tezduyar andHughes.12 Later, this
methodfor compressibleflows wasrefinedandstudiedby severalresearchers.13–17 The DSD=SST
finite elementformulation for incompressible flows is stabilised using the Galerkin=least-squares
(GLS) method.18,19Onecanview theGLS methodasa generalizationof theSUPGmethod.For the
details of the GLS methodseeReference3.

In problems involving moving components, or two-fluid problems in which tracking of the
interfaceis necessary,the meshdeforms in responseto domainboundary and interfacemovement.
An automatic mesh-moving scheme20,21 is employed to take into accountthe meshdeformation.
Occasionally the meshdistortion growsand an automatic meshgenerator22 is usedto periodically
generatea new meshin order to limit the deformationof the mesh.

In this paperwe reviewthegoverning equationsandsolution for threeinteraction problems:(i) the
vibrationof a metalplatein a vacuumandalso with a fluid on oneside;(ii) theinteraction between a
compressible fluid anda pistontreatedasan electric body; (iii) the interaction betweena jet of gas
and a puddle of liquid. In Section 2 we discussthe governingequationsfor incompressible and
compressible flows and for linear elastodynamics. In Section 3 we discussthe finite element
formulations used in this work and the interface conditions used in modelling the multimedia
interaction. Thesemethodsaretestedon threeproblems, presentedin Section4, andconclusionsare
presentedin Section5.
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2. GOVERNING EQUATIONS

LetOt � R
nsd and(0, T ) bethespatial andtemporal domains respectively,wherensd is thenumberof

spacedimensions,andlet Gt denotetheboundaryof Ot. Thesubscript t implies thetime dependence
of the spatialdomain. The spatialandtemporal co-ordinatesaredenoted by x 2 Ot and t 2 �0;T�.

2.1. Incompressibleflows

The Navier–Stokesequations for incompressible flows are

r
@u
@t
� u ? HHu ÿ f

� �

ÿHH ? s � 0 on Ot; �1�

HH ? u � 0 on Ot; �2�

where r is the density u is the velocity vector and f is the body force per unit mass.For the
Newtonianfluids under considerationthestresstensorfor a fluid with dynamicviscositym is defined
as

s�u; p� � ÿpI � 2me�u�; �3�

where I is the identity tensorandp denotesthe pressure.The strain rate tensoris definedas

e�u� � 1
2 �HHu � �HHu�T�: �4�

The Dirichlet- andNeumann-typeboundaryconditions arerepresentedrespectively as

u � g on �Gt�g;

n ? s � h on �Gt�h;
�5�

where �Gt�g and �Gt�h are complementarysubsets of the boundaryGt. The initial condition on the
velocity is specified on O0:

u�x; 0� � u0 on O0; �6�

where u0 is divergence-free.

2.2. Compressible liquid flows

Compressibility of li quidsis measured in termsof the bulk modulus, which givesthe variation in
pressurefor a fractional changein densityat a constanttemperature, i.e.

K � r
@p

@r

� �

y

: �7�

Here K andy are the bulk modulus and temperature respectively. For liquids the bulk modulusis
typically very large(in therangeof billions of Pascals in our case),meaning that thecompressibility
is very small. In problemswith thepressureof thesameorderof magnitudeasthebulk modulus, the
compressibility of the working fluid playsan importantrole. Although the variations in density are
small, thesestill lead to largevariations in pressure. In suchcasesthe liquid is usuallymodelled asa
barotropicfluid, in which thepressureis assumedto bea function of density alone.A simpleequation
of statewhich relatesthepressureto thedensity canbeobtained by assuming thatthebulk modulus is
a linear function of pressure,i.e.

K � K1 � K2p; �8�
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where K1 is thebulk modulusat zerogaugepressureandK2 is a dimensionlessconstant.Thesolution
of equations (7) and(8) yields

p �
K1

K2

r

r0

� �K2

ÿ1

" #

; �9�

where r0 is the densityat zerogaugepressure.
The barotropic fluid assumption, along with the assumption of constantviscosity, decouplesthe

energy equation from the governing equations,and the equations of conservation of massand
momentum suffice to describe the flow field characteristics of compressible liquid flows. These
equations in conservation law form canbe written as

@U
@t

�

@Fi

@xi
ÿ

@Ei

@xi
� 0 on Ot; �10�

where U � �r; ru1; ru2; ru3� is the vectorof conservation variablesandFi andEi are respectively
the Euler andviscousflux vectors definedas

Fi �

uir

uiru1 � di1p
uiru2 � di2p
uiru3 � di3p

0

B
B
@

1

C
C
A
; �11�

Ei �

0
�T�i1
�T�i2
�T�i3

0

B
B
@

1

C
C
A
: �12�

Herethe identity tensor is denoted by dij and �T�ij arethe components of the viscousstresstensorT
defined as

T � m�HHu � �HHu�T� ÿ 2
3 m�HH ? u�I: �13�

Alternatively, equation (10) canbe written as

@U
@t

� Ai
@U
@xi

ÿ

@

@xi
Kij

@U
@xj

 !

� 0 on Ot; �14�

where

Ai �
@Fi

@U
; �15�

Kij
@U
@xj

� Ei: �16�

An appropriate setof boundary andinitial conditions is assumedto accompany equation (14).
In thefluid–structure interaction computations theassumption of axisymmetryis used.Under this

assumption the equations of conservation of massandmomentum arewritten as

@U
@t

�

@Fz

@z
�

@Fr

@r
� Sr ÿ HH ? E � 0 on Ot; �17�
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where r andz aretheradialandaxial co-ordinatesrespectively. The vectorof conservation variables
andthe Euler flux vectorsare

U �

r

ruz

rur

0

@

1

A; Fz �

uzr

uzruz � p
uzrur

0

@

1

A; Fr �

urr

urruz

urrur � p

0

@

1

A: �18�

Also

Sr �
ur

r
U: �19�

E is the matrix containing the dissipative terms:

E �

0
T

� �

: �20�

Equation(17) canalsobe written as

@U
@t

� Az
@U
@z

� Ar
@U
@r

� Sr ÿ H ? E � 0 on Ot: �21�

Az andAr are the Jacobiansof the Euler flux vectorswith respect to U:

Az �
@Fz

@U
; Ar �

@Fr

@U
: �22�

Again, appropriateboundaryand initial conditionsarespecifiedfor equation (21).

2.3. Linear Elastodynamics

Thedeformationsstudied in this researchareassumedto besmall enoughto beconsideredelastic.
The motion anddeformation of the solid canthereforebe described using classical linear elasticity
theory andthe governingequations are

rs
�d � H ? ss � b on Os: �23�

rs is the density of the solid and d; _d and �d are the displacement, velocity and acceleration
respectively of a point in the body.ss is the Cauchystresstensorin the solid. The body force b is
assumed to be zero throughoutthis work.

If the body is assumedto be homogeneousandisotropic, ss canbe written23 as

ss � ms�HHd � �HHd�T� � ls�H ? d�I; �24�

where ls and ms are Lame’s elastic constants and ms is sometimescalled the shearmodulusand
denoted by G. They arerelatedto Young’s modulusEs andPoisson’sratio ns by

ls �
nsEs

�1 � ns��1 ÿ 2ns�
; �25�

ms �
Es

2�1 � ns�
: �26�

The Dirichlet andNeumannboundaryconditions arewritten as

d � gs on �Gs�g � �0;T�; �27�

n ? ss � hs on �Gs�h � �0; T�: �28�
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�Gs�g and �Gs�h arecomplementary subsetsof the boundaryGs. The initial conditionsare

d�x; 0� � d0 on Os; �29�

_d�x; 0� � _d0 on Os: �30�

Theremust alsobeconditionsdefinedon thefluid–structureinterface. Thesearethat thefluid does
not slip alongthestructuresurface.Also, theonly fluid forceassumedto actuponthestructureis the
pressureforce, sincethis is assumedto be much larger thanthe viscousforces.

3. DSD=SSTFORMULATION

3.1. Incompressibleflows

In orderto construct thefinite elementfunctionspaces for thespace–time method,we partition the
time interval (0, T ) into subintervalsIn � �tn; tn�1�, wheretn andtn�1 belongto anorderedseriesof
time levels0 � t0 < t1 < � � � < tN � T . Let On � Otn

andGn � Gtn
. We definethe space–time slab

Qn asthedomainenclosedby thesurfacesOn;On�1 andPn, where Pn is thesurfacedescribedby the
boundaryGt as t traversesIn. As is the casewith Gt, the surfacePn is decomposed into �Pn�g and
�Pn�h with respectto thetypeof boundary condition(Dirichlet or Neumann)beingimposed.For each
space–timeslabwe definethecorrespondingfinite element functionspaces�sh

u�n; �v
h
u�n; �s

h
p�n and

�v
h
p�n. Over the elementdomainthis spaceis formedby using first-orderpolynomials in spaceand

time. Globally, the interpolation functionsarecontinuous in spacebut discontinuousin time.
The stabilized space–time formulation for deforming domainsis then written as follows: given

�uh
�

ÿ

n , find uh
2 �s

h
u�n andph

2 �s
h
p�n suchthat 8wh

2 �v
h
u�n andqh

2 �v
h
p�n

�

Qn

wh
? r

@uh

@t
� uh

? HHuh
ÿ fh

� �

dQ �

�

Qn

e�wh
�:s�ph

; uh
�dQ �

�

Qn

qh
HH ? uhdQ

�

Pnel

e�1

�

Qe
n

1

r
t r

@wh

@t
� uh

? HHwh

� �

� HHqh
ÿ 2mHH ? e�wh

�

� �

? r
@uh

@t
� uh

? HHuh
ÿ fh

� ��

� HHph
ÿ 2mHH ? e�uh

�

�

dQ �

Pnel

e�1

�

Qe
n

dHH ? wh
rHH ? uhdQ

�

�

On

�wh
�

�

n ? r��uh
�

�

n ÿ �uh
�

ÿ

n � dO �

�

�Pn�h

wh
? hhdP �31�

This processis appliedsequentially to all thespace–timeslabsQ0;Q1; . . . ;QNÿ1. In thevariational
formulation given by equation (31), the following notation is used:

�uh
�

�

n � lim
E!0

u�tn � E�; �32�

�

Qn

�. . .�dQ �

�

In

�

On

�. . .�dOdt; �33�

�

Pn

�. . .�dP �

�

In

�

Gn

�. . .�dGdt: �34�

The computationsstart with

�uh
�

ÿ

0 � uh
0: �35�

In the variational formulation given by equation (31), the first threetermsandthe right-handside
constitute the Galerkin formulation of the problem. The first seriesof element-level integrals in
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equation (31) consists of leastsquarestermsbasedon themomentum equation. The secondseriesof
element-level integralsis addedto theformulationfor numerical stability at high Reynoldsnumbers;
these areleastsquarestermsbasedon thecontinuity equation. Both stabilization termsareweighted
residuals andthereforemaintain theconsistencyof theformulation. Thesixth termenforces,weakly,
thecontinuity of thevelocity field betweenthespace–timeslabs.Thestabilization coefficientst andd
aredefinedin References5 and24.

3.2. Compressible flows

In the finite elementformulation of compressibleflows we definethe function spacessh
n andvh

n

corresponding to the trial solutions and weighting functions respectively. Again we usefirst-order
polynomials as interpolation functions. Globally, these functions are continuous in space but
discontinuousin time.

TheDSD=SSTformulation of (14) canbewritten asfollows: given �Uh
�

ÿ

n , find Uh
2s

h
n suchthat

8Wh
2v

h
n

�

Qn

Wh
?

@Uh

@t
� Ah

i
@Uh

@xi

� �

dQ �

�

Qn

@Wh

@xi

� �

? Kh
ij
@Uh

@xj

 !

dQ �

�

On

�Wh
�

�

n ? ��Uh
�

�

n ÿ �Uh
�

ÿ

n � dO

�

P�nel�n

e�1

�

Qe
n

t�Ah
k�

T @Wh

@xk

� �

?

@Uh

@t
� Ah

i
@Uh

@xi

� �

dQ �

P�nel�n

e�1

�

Qe
n

d
@Wh

@xi

� �

?

@Uh

@xi

� �

dQ

�

�

�Pn�H

Wh
? HhdP: �36�

where H is the Neumann-typeboundary condition,and(Pn)H is the part of the space-time boundary
with suchboundary condition.

The solution to (36) is obtained sequentially for Q0;Q1; . . . ;QNÿ1, commencing with

�Uh
�

ÿ

0 � Uh
0; �37�

where U0 is theinitial valueof thevectorU. Thenotationgiven in equations(32)–(34)is alsousedin
equation (36).

In theformulation(36) thefirst threeintegralstogetherwith theright-handsiderepresent thetime-
discontinuousGalerkinformulation of (14). Thethird integralenforces, weakly,thecontinuity of the
conservation variables in time. The first seriesof element-level integrals consistsof the SUPG
stabilization terms and the second series consistsof the shock-capturing terms added to the
formulation. The definitions of t, a diagonalmatrix, andd aregiven in Reference6.

Once again,assuming axisymmetry,theDSD=SSTformulation of equation (21) canbewritten as
follows: given �Uh

�

ÿ

n , find Uh 2s
h
n suchthat 8Wh

2v
h
n

�

Qn

Wh
?

@Uh

@t
� Ah

z
@Uh

@z
� Ah

r
@Uh

@r
� Sh

r

� �

dQ �

�

Qn

HHWh: EhdQ �

�

On

�Wh
�

�

n ? ��Uh
�

�

n

ÿ �Uh
�

ÿ

n �dO�

P�nel�n

e�1

�

Qe
n

�Ah
z �

T @Wh

@z
� �Ah

r �
T @Wh

@r

� �

?

@Uh

@t
� Ah

z
@Uh

@z
� Ah

r
@Uh

@r
� Sh

r

� �

dQ

�

P�nel�n

e�1

�

Qe
n

d
@Wh

@z
?

@Uh

@z
�

@Wh

@r
?

@Uh

@r

� �

dQ �

�

�Pn�H

Wh
? HhdP: �38�
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A solution to thisequation is developedin amanneranalogousto thatof equation (36). Thedefinition
of the discontinuity-capturing coefficient d is modified slightly from that of Reference 6 for
axisymmetricproblems.25 Also, thedefinitionof HHWh: Eh in equation(38) is given in Reference25.

3.3. Linear Elastodynamics

In thesimulation of linearelastodynamicsproblemsasemidiscretefinite elementmethodis usedin
which the spatial domain is discretized using a finite element method.Analogously to the above,
function spacessh

s andvh
s are defined which correspond to the trial solutions and weighting

functions respectively. First-order polynomialswhich arecontinuousin spaceareused.
The Galerkinformulation of equation(23) is: given d0 and _d0, find dh

2s
h
s suchthat8wh

s 2v
h
s

�

Os

wh
s ? rs

�dhdO�

�

Os

Hwh
s :ss�d

h
�dO �

�

�Gs�h

wh
s ? hh

s dG: �39�

The finite element discretization results in a coupled systemof second-orderordinary differential
equationsin time. This is solvedusingthea-method(theHilber–Hughes–Taylormethod)26 with a set
to ÿ0�3.

3.4. InterfaceConditions

In thefluid–gasinteraction modeleachelement is filled completely with eithergasor liquid andno
phasechangeoccursduring the simulation. The meshmovesduring the simulation to track the
interfaceand the same nodesalwayslie along the interface. Surface tensionalong the boundaryis
neglectedsothat thetractionson eithersideof theinterfacearethesame.Also, thetwo fluids arenot
permitted to slip relative to eachotheracrossthe interface.

The fluid model and the structuremodel are couplediteratively. In eachtime stepthe structure
model is updated baseduponthe flow datafrom the previoustime stepandthe fluid model is then
updated basedon the new structuredata.Performing two iterations betweenthe structureandfluid
models per time stepresultsin sufficient non-linearconvergence.

In computing the pressureforces upon the structure, the pressure at eachsurface node of the
structureis computedusinglinearinterpolation.Likewise,linear interpolation is usedto computethe
location of eachnodein thefluid mesh alongthefluid–structureinterfaceaswell asthefluid velocity
at that node.

4. NUMERICAL EXAMPLES

Previouswork hasfocused on the flow characteristicsof a compressible liquid propellant between
pistons in relative motion in a regenerative liquid propellant gun (RLPG).25,27 Although good
comparisonwith experimental gun datawasachieved, the simulation indicated no tendencyof the
flow to separatefrom theinjectionorificeboundary. Live firing testsindicate,however, thata reversal
in the direction of flow betweenthe pistonscanoccur. In addition, it is known that the pistonsare
elastic and it is speculatedthat the piston motion can couple to the fluid motion such that the
boundary layer at the pistoninjection orifice is disturbed.The current fluid–elasticsolid modelwas
developedto investigatethe interactionbetweenthe pistonvibration andthe fluid.

In addition,gasinteractswith thefluid in adifferentregionof thegunto form droplets.In thisgas–
fluid interaction problem, fundamental mechanismsof droplet formation can be investigated.Both
problems are driven by the need to obtain fundamental physical information in regions and at
pressuresandtemperatureswhere direct diagnostic dataaredifficult or impossible to obtain.
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In orderto showtheapplicability of thesenumericalmodels to thegunfiring cycle, themodels are
applied to threetestproblems.The first is the vibration of a metalplate,both in a vacuumandalso
with fluid on one side of it. This problem was chosen to test the accuracyof the fluid–structure
interaction model. The secondprobleminvolves the flow of liquid propellantbetween two pistons.
The third problem involvesa jet of hot gasstriking a puddle of propellant.

4.1. Vibration of a flat plate

This problemwaschosen to validatethefluid–structureinteraction modelintroducedin this paper.
Analytical valuesare available for the natural frequencies of a simply supported, round,flat plate
vibratingin a vacuumandwith a fluid on oneside.28 An axisymmetricmodelof theplateandfluid is
usedto computethe naturalfrequenciesandthe numericalmodel is validatedby the comparisonof
the computedandanalytical naturalfrequencies.

The simply supported boundarycondition is approximatedby fixing to zero the axial and radial
displacementsof thenodein themiddle of theouterboundaryof theplate.A fully unstructuredmesh
of theplate,consisting of 866elementsand488nodes,is usedandwasgeneratedusinganautomatic
mesh generator developedat the Army HPC ResearchCenter, University of Minnesota.21

Typically, linear triangular elements are not usedfor studying the dynamics of linearly elastic
bodies in cases where one body dimension is much smaller than the others. This is becausethe
displacementwithin a three-nodetriangular element is linear, so the strain within eachelement is
approximated as constant.However, the interfaceconditionsusedin this work are much easierto
implement if thereis onenodeof the plate mesh on the fluid–structure for everynodeof the fluid
mesh on theinterfaceandif theplatenodeandthecorrespondingfluid nodeareat thesame location.
Also, accuratecomputation of the fluid dynamics requires a certainlevel of refinementof the mesh,
and using a refined mesh of the plate is inexpensive relative to using a refined meshof the fluid.
Basedon all of this, a finer meshof theplateis usedin this researchthanwould typically be usedin
thestudy of avibrating plate.In this mesh, with at leastthreeelementsacrosstheplatethickness(and
in most place four to six elements), the piecewise constant strain through the place thickness is
sufficient to accurately model the plate.29

Another problem with using triangular elementsto model elasticsolids is that they can lock in
bending.This is seenwhen theradial lengthof theelementis comparablewith or largerthantheplate
thickness.Owing to the meshrefinement in this problem,locking is not seen.29

The plate is initial ly deformed, the initial shape being determined by imposing a motion
perpendicular to the plate. The magnitude of the initial displacement of a point on the plate is a
sinusoidalfunctionof thedistanceof thepoint from thesymmetry axis;seeFigure1. In thisfigure the
nodeson theouterboundary (shownat thetopof Figure1) arenotdisplaced,but this is only a feature
of the initial displacement.As theplatevibrates,only themiddlenodeon thatboundary is fixed,the
other nodeson thatboundary being free to moveaxially andradially. The plateis releasedfrom this
initial shapeand allowed to vibrate. Various axisymmetric naturalmodesof the plate are excited
depending uponthe initial deformation.

The plate is allowed to vibrate in a vacuumandalsowith a semi-infinite column of fluid on one
sideof that plate.The natural frequencies of vibration of this plateboth with andwithout the liquid
aregiven in Reference28. In thecurrentwork, only theaxisymmetric modesarebeinginvestigated.

Theplateis madeof 17-4stainlesssteelwith aYoung’s modulusof 196�0 GPa,aPoisson’s ratioof
0�3 anda densityof 7772kg m73. It hasa thicknessof 4�0 cm anda radius of 1�0 m.
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4.1.1. Vibration of a flat plate in a vacuum. According to Reference28, thefrequenciesof thefirst
axisymmetric modesof the plate vibrating in a vacuumare48, 288, 718 and1338Hz. In order to
excite thesemodes of vibration, the plate is initially deformedandreleased.

Themotionof thecentre point of theplateduring20 msandthedatafrom a fastFouriertransform
(FFT) of the motion of this point over a time periodof approximately 0�4 s areshownin Figure 2.
Themotion of theplatecentrepoint during thespant� 0�35–0�37 s is representativeof themotionof
that point during the entire simulation. The displacement of the plate centrepoint at t� 0�0 s is
0�006 m, so the amplitude of the platevibrationsis not diminishing over time.

Thecomputednaturalfrequenciesof thefirst four axisymmetric modes, asshownin Figure2, are
49, 295, 732 and1348Hz. All computed results arewithin 2�4% of the theoretical results.

Figure1. Vibration of a flat plate. Initial deformationof flat plate in order to measurefrequencyof first four axisymmetric
modes(left). Initial deformationmultiplied by 10 (right). Half of cross-section of plate is shown

Figure2. Vibration of a flat platein a vacuum.Motion of centrepoint of plate(left). Frequencyspectrum of platecentrepoint
motion over 0�4 s (right). Plateradius1 m, plate thickness4 cm
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4.1.2. Vibration of a flat plate with a fluid on one side. The plate was also allowed to vibrate
with a fluid on onesideof it. The frequencyof the first axisymmetric modeof this fluid–structure
problem is given in Reference30. An unstructured meshfor the fluid wasgenerated usingthe same
mesh generator as above.The meshconsists of 1968 nodesand 3774 elements. The fluid usedis
XM46, a liquid monopropellantbeing studiedby the U.S. Army for possible use in future field
artillery weapons. The density of XM46 is 1430kg m73. The values for equation (9) are
K1 � 5�35 GPaandK2 � 9�11. According to Reference30, the frequency of the first axisymmetric
modeis 20 Hz.

In simulating thisproblem,theoscillation of theplatedampedout fairly quickly; seeFigure3. This
is dueto propagationof the initial energyof thesystemout of thecomputationaldomain throughthe
liquid. In the physicalproblem,assuming the fluid domainextendsto infinity, the initial potential
energy storedin thedeformedplateeventually all propagatesto infinity through thefluid. An FFT of
the curve in Figure 3 shows a strongfrequency at 19�8 Hz anda weaker frequencyat 194 Hz, the
computednatural frequenciesfor the first two axisymmetric modes.The computed frequencyof the
first modeis within 1% of the expectedvalue.

Remark. The vibrating flat plate wasalso studiedwith a coarserplate mesh(250 nodesand394
elements,with threenodesacrosstheplatethickness)anda coarserfluid mesh(597nodesand1087
elements).For the platevibrating in a vacuumthe computednaturalfrequencies were49, 305,759
and 1397Hz, all within 6% of the analytical results. For the plate with a fluid on one side the
computednaturalfrequency was18�3 Hz, within 8�5% of the expected value.

4.2. Vibration of a movingmechanical component

This problemwas chosento test the featuresof the fluid–structureinteraction model.Again the
problem is assumedto be axisymmetric. There is a fixed, rigid circular cylinder and a moving,
deformablepistonsurrounding it; seeFigure 4. Thereis a greaselayer between the piston and the
outer wall to preventcontactbetweenthesurfaces. Sincethegreaselayeronly needsto be0�15 mm
thick, relative to a pistonouter radiusof 3�75 cm, the greaselayer is neglectedin the calculations.
The greaselayer,however,imposes thepressurein thechamberonto theouterfaceof thepiston.In
orderto accountfor this, thepressurewhich is imposed at thefluid outflow boundary is alsoimposed
onto the outer faceof the piston.

Figure3. Vibration of a flat platewith fluid on oneside.Motion of centrepoint of plate
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XM46 flows in throughtheboundary at the left endof thedomain,through theorificeat the right
endof thepistonandout througha circular holein theright-handboundary.Unstructuredmeshesare
usedfor boththefluid andpistonproblems,againgeneratedusingtheAHPCRCmeshgenerator. The
initial meshfor the fluid andthe meshfor the pistonareshownin Figure5. The mesh of the piston
consistsof 1382nodesand2570elementsandthe initial fluid mesh consistsof 2489nodesand4696
elements.

The left end of the piston is held fixed and the computations start.The piston begins to vibrate
owing to thepressureforcesacting uponit. Usingthisasaninitial condition,theleft endof thepiston
undergoesa known sinusoidalmotion with an amplitude of 0�015 m and a frequencyof 3 kHz.
Assumingno deformation of thepistonfor a moment, theclearancebetween thepistonfaceandthe
rigid cylinder endin the initial configuration is 0�5 m, which is alsothe maximum clearanceasthe
pistonis moved.Theminimum clearance,still assuming rigid motion of thepiston,is 0�002 m. With
such a large differencebetweenmaximum and minimum clearances,the meshspanningthe gap
between the piston and the cylinder is deformed during the simulation. To prevent excessive
distortion, a new mesh is generated periodically during the stimulation. The AHPCRC mesh
generator is usedto generate the new meshes.

Figure4. Vibration of a moving mechanicalcomponent.Cross-sectionof domain(greaselayer thicknessnot drawnto scale)

Figure5. Vibration of a moving mechanicalcomponent. Meshof piston(left) andfluid mesh(right)
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Themotion of thepistontip, thepoint on thepistonwheretheradiusis thesmallest,relativeto the
left endof thepiston,waschosen asa measureof thedeformationof thepiston.This relative motion
is shown in Figure 6 along with the imposed motion on the left end of the piston. Immediately
precedingthe imposed sinusoidalmotion,an impulsivemotion is imposed to excitevibrationsof the
piston.In Figure 6 the initial relativemotion is very oscillatory owing to this excitation.Most of the
oscillationsdampout quickly, leavinga few strongfrequencies.Thedatafrom anFFTof this relative
motion is shownin Figure7. Therearelarge3 kHz oscillations,caused by the forcing function, and
also oscillationsnear6, 9, 12 and15 kHz, all of which areovertonesof theforcing frequency, caused
by theinteraction with theliquid. Theoscillations near13�5 kHz indicate that13�5 kHz is probably a
natural frequencyof the piston.

The velocity vectors and Mach number distribution are shown in Plate 1. The times shown,
t � 1�0, 1�08, 1�17, 1�25 and1�33 ms,spanoneperiodof the forcedmotion of the left of thepiston.

4.3. GasImpingingon a Liquid

The combustion rate in the RLPG is highly related to the dropletsizesformedin both initial and
final ignition processes.Droplet formation mechanisminvolved in the initial ignition processareroll
wave, wave undercut, bubble burst and liquid impingment. In eachmechanism, very complicated
gas–liquid interactionsoccurwhich result in an unstableinterfacebetween the gasand liquid.

In theinitial ignition processof theRLPGthedroplets areformedpredominantly by roll waveand
wave undercutmechanisms.In thesemechanismsa sufficiently high gas velocity makesthe gas–
liquid interfaceunstable andwavesappear.Dropletsareformedin theregionswhere theshearforces
are larger than the surfacetension. Therefore onecansplit the waveundercut mechanisminto two
parts,i.e. waveformation anddroplet formation.

The objective of this problem is to demonstratethe computationalcapability of simulating wave
formation. This capability will be usedto obtain a betterunderstandingof the fundamental physics
behind wave formation caused by the wave undercut mechanismand the subsequentformation of
droplets.In this problem,incompressible gaswith a velocity of 50 m s71 at anangle of 30� from the
vertical hits flammable liquid which is initial ly at rest.Initially the liquid occupiesthe lower quarter
of a cubewith dimensions 10 cm on eachside. The liquid is assumedto be 45�3 timesheavierthan
thegasandtheReynoldsnumber basedon thecubesize, injection velocity andviscosity of thegasis
106. Thecomputation is carriedout on theparallel supercomputer Thinking MachinesCM-5 usinga

Figure6. Vibrationof a movingmechanicalcomponent.Imposedmotionon left endof piston(bottom).Motion of tip of piston
in orifice, relative to left endof piston(top) (negativeindicatesmotion towardsfixed block)
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structuredmesh madeof 50650650 hexahedral elements. Thetime incrementwassetto 0�05 and
in everytime stepapproximately 106 coupled non-linearequations aresolved to obtain the pressure
andvelocity fields. To keeptrack of the interfacebetweenthe gasand liquid, we usean automatic
mesh-moving schemeto movethefinite element mesh.Themesh-moving scheme,which is basedon
the linear elasticity equations, is described in Reference20. Using this scheme,more than400,000
equations aresolvedto updatethe finite elementmeshat every time step.

Plate 2 shows the velocity field in the vertical, central plane (left picture) and the pressure
distributionon thesurfaceof the liquid (right picture)at t� 0�05 s.Figure 8 shows thesurfaceof the
liquid at t� 0�0 s (left picture) and t� 0�075 s (right picture).

5. CONCLUSIONS

Thedeformable-spatial-domain=stabilized-space–time(DSD=SST)formulationhasbeensuccessfully
applied to problemsinvolving fluid–structureinteractions and two-fluid interfaces. Specifically, we
havedemonstratedthe capability to model the coupledbehaviourof a pistonbehavingasan elastic
solid anda compressiblefluid in which thecomputational domainmustbedeterminedaspart of the
calculation as it changesin size and shape. Although few data are available for validation, the
reliability of themethodis first demonstratedby comparisonwith a probleminvolving a flat plate.In

Figure7. Vibration of a moving mechanicalcomponent.Frequencyspectrumof motion of piston tip relative to left endof
piston

Figure8. Gasimpinging on a liquid. Surfacediscretization of liquid at t� 0�0 s (left) and t�0�075 s (right)
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addition, we havemodelled the interaction at the interfaceof an ideal gasanda barotropic fluid in
which the gasimpingeson the liquid.

The modelling capabilities discussed are of interest to the U.S. Army in the investigation of
physical behaviour encounteredin advanced weaponssystems. Sinceexperimental diagnosticsare
often difficult or impossibleat the extremesof conditions encounteredin guns,high-fidelity models
often provide the primary meansof understanding the dominant physical mechanisms at gun
pressuresandtemperatures.
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