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SUMMARY

The application of a stabilized space—time finite element formulation to problems involving fluid—structure
interactions and two-fluid interfaces is discussed. Two sample problems are presented and the method is
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1. INTRODUCTION

Increasingly, problems of interior ballistics for advanced gun systems are treated as multidisciplinary
in nature, since the flow fields are stressed beyond traditional limits in physical parameters such as
pressures and temperatures. The gun internal environment for tank and artillery is by nature severe:
ranging in pressure from ambient to 500 MPa or higher; temperatures from ambient to the flame
temperature of the solid propellant up to 3500 K; acceleration of tactical projectiles with intruding
afterbodies to muzzle velocities exceeding 2500 T; sl within the timeframe of 25 ms. However,
advanced gun systems exceed these limits in order to achieve greater muzzle kinetic energies and, at
the same time, often introduce additional complexity associated with liquid propellants and electrical
energy. For example, although the regenerative liquid propellant gun is within traditional limits in
terms of pressures and temperatures, it utilizes moving mechanical pistons to inject liquid propellant
from a reservoir into the combustion chamber. Since the pistons move, the combustion chamber
shape and volume change in time. In the electrothermal—chemical gun, electrical energy in the form
of a plasma is injected into the combustion chamber, raising the temperature at least locally to as high
as 20,000 K.

Experimental data have suggested an interaction between diverse media in the gun. For example,
pistons used in the regenerative liquid propellant gun and the flow field interact both to deform the
pistons and to influence the fluid flow from the reservoir into the combustion chamber. Break-up of
the fluid into droplets both during high-velocity injection into gas, and in regions in which a puddle of
liquid is impacted by a high-velocity jet of gas, is caused by shear stress between the liquid and the
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1434 G.P.WREN ET AL.

gas.Long-bodyprojectileswhich intrudeinto the combustionchamber suchasthoseusedfor kinetic

enegy weaponsfesmpnd to the flow fields of electothermal-clemicd gunsand advaned charge
desgns uniquely differently from the responsein traditional guns. Thus new computdional

techniquesare neede to addresscoupling problemsof interior ballistics which involve interacton

betwea diversemeda suchas gasesdeformablesolids and liquids.

The mog promisng computational method for the soluion of interaction problens betwea
diverse media with complex geometies is the finite element method using formulations for
multiphase,multicomporent, compressilte, reacting fluid flow with real equations of state.The
devebpmentof finite elementformulationsfor fluid dynamic applicationsis a researckfield that
offers significant promise for suchdifficult problers. In this paperwe utilize the deformable-sp#al-
doman/stabilized—spacetime (DST/SST) finite element formulaion to study a multifluid, non-
reading, compresible andincompressiblelow problemin which a slightly compresible barotrgic
liquid interects with an incompeessible gas. We also coupke the DSD/SST-basd modé of the
barotopic liquid with a finite element model of a linearly elastic body to study fluid—gructue
interection phenonena.

In a discantinuousin-time space—tine formulation the govening equatias of the problem are
integratedin the spacetime doman. Also, the finite element interpoldion functionsare functionsof
bothspatal locationandtime. Theseinterpolaion functionsarediscontinuousin time but coninuous
in spaceDiscortinuousin-time spacetime methodswvereearlierusedwith spatal domainswhich do
not changewith time*™

The DSD/SSTformuIation takesadvantagef the fact thatthe govemning equaions areintegrated
over the spacetime domain,by being ableto absob meshdeformation automateally in problems
involving moving boundaies and interfaces. This methodwas first introduced for incompeessible
flows > Later, a similar technique wasdevelopedor compressilte flows® The DSD/SSTformulaton
can be effectvely implementedon parallel supecomputes.”®

Two types of stabilizaton techniquesare usedin the DSD/SSTfinite elementformulations.For
compressilte flows the DSD/SST formulation, which is in the contextof conservabn variables, is
stabilized using the streamine-upwird/Petrov—CaIerkin (SUPG) method. The SUPG method for
incompresible flows wasfirst introducedby HughesandBrooks!° with a detdled descrigion of the
formulation and numeical exampes given in Referencell. The SUPG methodfor compressilte
flows, in the coniext of consevation variables,wasintroducedby Tezduya andHughes?? Later, this
methodfor compressibleflows wasrefinedand studiedby severalresarchers:*>*’ The DSD/SST
finite elementformulation for incompressble flows is stabilieed using the Galean/Ieast—squaes
(GLS) method'®*° One canview the GLS methodasa genealization of the SUPGmethod.For the
detals of the GLS methodseeReference3.

In problens involving moving comporents, or two-fluid problemsin which tracking of the
interfaceis necesary,the meshdeforns in responsé¢o domainbounday andinterface movement.
An autanatic mesh-noving schene®®?* is emdoyed to take into accountthe meshdefomation.
Ocaasionally the meshdistortion grows and an automaic meshgeneradr®® is usedto periodicaly
geneate a new meshin orderto limit the deformation of the mesh.

In this paperwe reviewthe govemning equaionsandsolution for threeinteraction problems(i) the
vibration of a metalplatein a vacuumandalso with afluid on oneside;(ii) theinteracton betwee a
conpressilte fluid anda pistontreatedasan electic body; (iii) the interection betweena jet of gas
and a puddle of liquid. In Secton 2 we discussthe governing equationsfor incompressble and
compressille flows and for linear elastodynamis. In Section 3 we discussthe finite element
formulations used in this work and the interface condtions usedin modelling the multimedia
interection. Thesemethodsareteded on threeproblens, preentedin Section4, andconclsionsare
preentedin Section5.

INT. J. NUMER. METH. FLUIDS, VOL 24: 1433-1418 (1997) (©)1997by JohnWiley & Sons,Ltd.



FLOW PROBLEMSWITH MOVING MECHANICAL COMPONENTS 1435

2. GOVERNING EQUATIONS

Let QQ C[R« and(0, T) bethespatid andtemporl domans respectively, wheren,, is thenumter of
spacedimensons,andlet I, denotethe boundaryof Q The subscipt t implies the time depenénce
of the spatialdoman. The spatialand tempoel co-ordnatesare denoed by x €€ andr €(0, 7).

2.1. Incompessibleflows

The Navier—3okesequatons for incomprestble flows are

p% ~+u - Vu —f)—V° o=0 onQ), (1)
V:u=0 on Q, (2)

where p is the densty u is the velocity vector and f is the body force per unit mass.For the
Newtonianfluids under consterationthe stressensorfor a fluid with dynamicviscosity ltis defined

o(u,p) =l +21€), (3)

where | is the idertity tensorandp denoteghe presure.The strainratetensoris definedas
€u) =3[V +W)'] @)
The Dirichlet- and Neumann-type boundaryconditions are represatedrespediely as
u=g on (I},
(5)
n+o=h on(I}),

where (I}), and (I7), are complementarysubseés of the boundaryI'}. The initial condtion on the
velocity is specifed on £):
u(x,0)=u, onQ}, (6)

where u, is divergence-fre.

2.2. Compressite liquid flows

Compeessibility of liquidsis measued in termsof the bulk moduus, which givesthe variation in
presurefor a fractiond changein densityat a constantemperatire, i.e.

K :p(%) ; (7)

Here X and 0 are the bulk moduus and temperatire resgectively. For liquids the bulk modulusis
typically very large(in the rangeof billions of Pascés in our case) meaning thatthe compresibility
is very smdl. In problemswith the pressuref the sameorderof magnitudeasthe bulk moddus, the
compressilility of the working fluid playsanimportantrole. Although the variatiors in densty are
smadl, thesestill lead to largevariatiors in pressureln suchcasegheliquid is usuallymoddled asa
barotopicfluid, in which the pressurds assumedo beafunction of densty alore. A simpleequaton
of statewhichrelatesthe pressurdo the densty canbe obtainal by assunng thatthe bulk moddusis
a linear function of presure,i.e.

K :Kl +K2pa (8)
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1436 G.P.WREN ET AL.

where K, is thebulk moduus at zerogaugepresureandk, is adimensionéssconstantThe solution
of equatiams (7) and(8) yields
K | /p\*
=— (=) 1| 9
= (p> ©)

where , is the densityat zero gaugepressure

The barotrgic fluid assumgbn, along with the assumpbn of constantviscosity, decoupleghe
enegy equatian from the govening equations,and the equatons of consevation of massand
momentum suffice to descrile the flow field characterists of compresible liquid flows. These
equatonsin conservabn law form canbe written as

L F
ata a0 08 (10)

where U =(p, pu,, pu,, Pu3) is the vector of conservabn variabkesandF; and E; are resgectively
the Euler andviscousflux vectbrs definedas

“ip5

_ | wipmn + 1P

F= iy +00p | (1)
u; Pz +-0sp

Tl
E = T; . (12)

Heretheidertity tensor is denoed by 5I»j and [T]l-j arethe componers of the viscousstresstensorT
defired as

T = Vu +(Vu)'] =2 (V- u)l. (13)

Alternatively, equaton (10) canbe written as

o au 9 o

T +Ai§i —a Ky-gj =0 on Q, (14)
where
A= (15)
aJ
K N —¢. 16
K ()

An appropriaé setof boundary andinitial condtionsis assumedo accompay equatio (14).
In the fluid—structire interection computdions the assumgbn of axisynmetryis used.Unde this
assunption the equatons of consevation of massand momentim are written as

a o,  OF
SHFE+E s, —VE=0 a0, (17)
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wherer andz arethe radial andaxial co-ordnatesrespectivly. The vectorof consevation variables
andthe Euler flux vectorsare

P u.p u.p
u={p ) F.=[wp+p |, Fo={ wp | (18)
p"r uzp’lr M,,Wr +p
Also
s, ="u. (19)

r

E is the matrix contairing the dissipdive terms

_ /0
E= (T ) (20)
Equation (17) canalsobe written as
o aJ o

- TA, + TA, + . —V E= . 21
a+z&+ra+s, V OOHQ ()
A, andA, arethe Jacoliansof the Euler flux vectorswith resgectto U:
oF oF
== A =", 22
o’ Y (2)

Again, appr@riate boundaryandinitial conditionsare specifiedfor equaton (21).

2.3. Linear Elastodyamics

Thedeformationsstuded in thisresarchareassumedo be smdl enoughto be consideedelastic.
The motion and deformation of the solid cantherefore be descibed using classcal linear elasticty
theay andthe governingequaions are

psa =V-o,+b onQ. (23)

P, is the densty of the solid and d,d and d are the displa@ment, velocity and accelerabn
respectively of a pointin the body. @ is the Cauchystresstensorin the solid. The body force b is
assuned to be zerothroughoutthis work.

If the body is assumedo be homayeneousandisotrapic, @, canbe written® as

o, =4 [Vd +Vd)' | +4 (V- d), (24)

where 4 and g are Lame’s elastic consantsand [ is sometimescalled the shearmodulusand
denoed by G. They arerelatedto Young’s modulusk, and Poisson’sratio v, by

— sts (25)

() —2v)’
E
SR e

The Dirichlet and Neumannboundarycondtions are written as

d=g, on [Fs]g x(0, 7), (27)

n+o,=h, on[l.], x(0,7). (28)
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[I:], and[I;], are complematary subsetwof the boundaryl ;. Theinitial conditionsare
d(x,0)=d, on €2, (29)
d(x,0)=d, on Q. (30)

Theremud alsobe conditionsdefinedon the fluid—structreinterface Thesearethatthe fluid does
not slip alongthe strucure surface.Also, the only fluid force assumedo actuponthe structureis the
presureforce, sincethis is assumedo be muchlargerthanthe viscousforces.

3. DSD/SSTFORMULATION
3.1. Incompessibleflows

In orderto constuct thefinite elementfunction space for the space—tine method we partition the
time interval (0, T) into subintervals/, :(t,,,t,,_H), wherer, andt,; belongto anordeted seriesof
time levels0 =, <t, <--- <ty =T. Let  =Q andl, =I, . We definethe spacetime slab
0, asthedomainenclsedby thesun‘acesQ,,Q,+l andP,, where P, is the surfacedescrited by the
bourdary I} ast traveses’,. As is the casewith I, the surface P, is decompoed into (P,), and
(Pn)h with respecto thetype of bounday condition(Dirichlet or Neumann)beingimposed Foreach
spacetime slabwe definethe correspadingfinite element function spaced.%),, (¥7),, (%), and
(”Wp),,. Over the elementdomainthis spaceis formedby using first-orderpolynomils in spaceand
time. Globally, the interpolation functions are continuais in spacebut discontnuousin time.

The stabilized spacetime formulaion for deforning domainsis then written as follows: given

("), find u" €(S2), andp” €(F2), suchthat W' €(#7), andg" €(¥7),
J W p( S W —f’”)dQ +J W) 0(", u' M0 + j £V U0
, 0, 0,

—|—i /l) r[p% +u" - Wv") +Vy" —21V - ew")
P Wh+uh W "\ + V' —2uV - €”) | dO —I—Z Jge oV -w'pV+ u"do

+[. @5 AW =) 1dQ= [ w'-hap (31)
Q, (P,
This processs appled sequatially to all thespacetimeslabsQ,, 0, ..., Oy - In thevariatioral
formulation given by equatia (31), the following notaion is used:
h T
(U )n:t _igno u(tn :I:E), (32)

Jg(...)dQ - J [Q” (.. )}, (33)
IPn(...)dP — J n IF" (.. Jlur. (34)

The computationsstat with

")y =uj. (35)
In the variatioral formulation given by equatio (31), the first threetermsandthe right-handside
consttute the Galerkin formulation of the problem The first seriesof elementlevel integrals in
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FLOW PROBLEMSWITH MOVING MECHANICAL COMPONENTS 1439

equaton (31) consiss of leastsquaestermsbasedon the momentim equaton. The secondseriesof

element-lewel integralsis addedto the formulationfor numertal stability at high Reynotds numbers
thes areleastsquaregsermsbasedon the coninuity equatio. Both stabilization termsare weighted
residuds andtherebre maintain the consistencyf the formulation. The sixth term enforceswedly,

the continuity of thevelocity field betweerthe spacetimeslals. The stabilizaton coefficientst ando
are definedin Refelences5 and 24.

3.2. Compressile flows

In the finite elementformulation of compresible flows we definethe function spaces#? and "
correspondhg to the trial soluions and weighting functions respectivey. Again we usefirst-order
polynomials as interpolation functions. Globaly, these functions are continuais in space but
disoontinuousin time.

W;/I’/?e [%D/SSTformulaﬁon of (14) canbe written asfollows: given (U");, find U" € . suchthat
v,

wie (a8 a0+ [ (B0 (ks 8N ag [ (wiyt- [L)F —() ]
JQ" a7 oy JQ,, afz' v JQ ' ’ '

:J w" “H'dP. (36)

(P,

where H is the Neumann-typebounday condition,and (P,))y is the part of the space-tine boundary
with suchbounday condiion.
The solutionto (36) is obtainal sequatially for Q,, 0, ..., Oy—, cOmMmencirg with

L") =ui, (37)

where U, is theinitial valueof thevectorU. Thenotationgiven in equaions (32)—(34)is alsousedin
equaion (36).

In theformulation (36) thefirst threeintegralstogetherwith theright-handsiderepresat thetime-
discontinuousGalerkinformulation of (14). Thethird integralenforcesweakly, the continuity of the
consevation variablesin time. The first seriesof elementlevel integrals consistsof the SUPG
stebilization terms and the secom series consistsof the shock-cajpuring terms addedto the
formulation. The definitions of T, a diagonalmatrix, and 0 aregivenin Refelence6.

Once again,assummg axisymmetry, the DSD/SSTformuIallon of equaion (21) canbe written as
follows: given (U"),, find U, € %" suchthat MW" € ¥

J W”-c%h—i—Af?h—l—Af%-l—sf)dQ—i-J wh:EthJrJ (W, [
U+ j;j (Ahfa” Ay ‘3‘”) (a; G +S”) 0
a

(1), oW ) U’ -
+ZL(5<ag = T3 a/)dQ J(P”)Hw H"dP. (38)

(©)1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1433-14481997)



1440 G.P.WREN ET AL.

A solution to this equaion is develpedin amanneranalgousto thatof equatian (36). The definition
of the discontnuity-capturing coefiicient 0 is modified slightly from that of Refeence 6 for
axisymmetricproblens ?® Also, the definition of VWW”: E” in equation(38) is given in Reference25.

3.3. Linear Elastodyamics

In the simulafon of linearelastodyamicsproblemsa semidiscetefinite elementmethodis usedin
which the spatid doman is discretzed using a finite element method. Analogausly to the above,
function spaces.” and 7" are defined which correspad to the trial solutions and weighting
functions respectivey. First-orde polynomials which are continuousin spaceare used.

The Galerkinformulation of equation(23) is: given d, andd,, find d" € % suchthat W/ € ¥

wh e pdtdQ4- [ Vo (@aQ=|  w! -ntdl (39)
Q Q s/h
The finite element discretizaton resuts in a coupled systemof secoml-order ordinary differential
equaionsin time. Thisis solvedusingthe occmethod(the Hilber—Hughes Taylor method$°® with ot set
to —0-3.

3.4. Interface Conditions

In the fluid—gasinteraction modeleachelement is filled comgetely with eithergasor liquid andno
phasechangeoccursduring the simulaton. The mesh movesduring the simulaion to track the
interface and the sane nodesalwayslie alongthe interface Suface tensionalong the boundaryis
negkctedsothatthetractionson eithersideof theinterfacearethe same Also, the two fluids arenot
pernmitted to slip relaive to eachotheracrossthe interface.

The fluid modéd and the structure model are couplediteratively. In eachtime stepthe strucure
modd is updatd baseduponthe flow datafrom the previoustime stepandthe fluid modelis then
updated basedon the new structuredata.Performng two iterations betweenthe structureand fluid
modds pertime stepresultsin sufficient non-linear convergene.

In computingthe pressureforces upon the strucure, the presure at each surface node of the
strucureis computedusinglinearinterpolation. Likewise,linearinterpolation is usedto computethe
locaion of eachnodein thefluid mesh alongthe fluid—structireinterfaceaswell asthe fluid velocity
at that node.

4. NUMERICAL EXAMPLES

Previbuswork hasfocused on the flow characeristicsof a compressilte liquid propélant betwea
pistonsin relative motion in a regenertive liquid propdlant gun (RLPG)?>?’ Although good
comparisonwith experimendl gun datawas achieved the simulation indicated no tendencyof the
flow to sepaatefrom theinjectionorifice bounday. Live firing testsindicate, however thatareversh
in the direcion of flow betweenthe pistonscanoccur. In addiion, it is known that the pistonsare
elastic and it is speculatedthat the piston motion can couple to the fluid motion such that the
bourdary layer at the pistoninjection orifice is distutbed. The current fluid—elasticsolid modelwas
devebpedto investigatethe interactionbetweenthe pistonvibration and the fluid.

In addition,gasinteracs with thefluid in adifferentregionof the gunto form droplets.In this gas—
fluid interacton problem fundametal medanismsof droplet formation can be investigated Both
problems are driven by the needto obtain fundamental physical informaton in regions and at
presuresandtempentureswhere direct diagnosic dataare difficult or impossble to obtan.
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FLOW PROBLEMSWITH MOVING MECHANICAL COMPONENTS 1441

In orderto showthe applicability of thesenumericalmodds to the gunfiring cycle, the modds are
appied to threetest problems.The first is the vibration of a metalplate,bothin a vacuumandalso
with fluid on one side of it. This problemwas chosa to teg the accuracyof the fluid—gructue
interaction modd. The secondprobleminvolvesthe flow of liquid propellantbetwea two pistons
The third problem involvesa jet of hot gasstriking a puddk of propellant

4.1. Vibration of a flat plate

This problemwaschose to validatethe fluid—gructureinteraction modelintroducedin this paper.
Analytical valuesare availalle for the natual frequendes of a simply suppoted, round, flat plate
vibratingin avacuumandwith afluid on oneside®® An axisymmetric modelof the plateandfluid is
usedto computethe naturalfrequenciesandthe numericalmodelis validatedby the comparisorof
the computedand analtical naturalfrequendes.

The simply suppoted boundaryconditionis apprximatedby fixing to zerothe axid and radial
dispacemens of the nodein the middle of the outerboundaryof theplate.A fully unstucturedmesh
of the plate,consising of 866 elementsand488nodesjs usedandwasgeneratedisingan autanatic
mes geneator devebpedat the Army HPC ResearchCenter, University of Minnesoa

Typically, linear triangula elements are not usedfor studying the dynamics of linearly elastic
bodies in cass where one body dimenson is much smaller than the othas. This is becausethe
dispacementwithin a three-noderiangula elemant is linear, so the stran within eachelement is
apprximated as constant.Howeve, the interfaceconditionsusedin this work are much easierto
implementif thereis one nodeof the plate mes on the fluid—strwcture for every node of the fluid
med ontheinterfaceandif the platenodeandthe correspadingfluid nodeareat the sane location.
Also, accuratecomputaion of the fluid dynamic requires a certainlevel of refinanentof the mesh,
and using a refined med of the plate is inexpensve relative to using a refined meshof the fluid.
Basedon all of this, a finer meshof the plateis usedin this resarchthanwould typically be usedin
thestudy of avibrating plate.In this med, with atleastthreeelementsacrassthe platethickness(and
in most place four to six elemants), the piecewise consant strain through the place thickness is
suffident to accuratey modd the plate®®

Another problem with usingtriangular elementsto modd elasticsolids is that they canlock in
bendig. This is seenwhen theradiallengthof the elementis comparale with or largerthanthe plate
thickness. Owing to the meshrefinemant in this problem,locking is not seer?®

The plate is initially deforned, the initial shape being detemined by imposing a motion
perpendicula to the plate. The magnitude of the initial displacenent of a point on the plate is a
sinwsoidalfunction of thedistane of the point from the symmery axis;seeFigure 1. In thisfigure the
nodesontheouterbounday (shownatthetop of Figure 1) arenotdisgaced,but thisis only afeature
of theinitial displacenent. As the platevibrates,only the middle nodeon thatbounday is fixed, the
othe nodeson thatbounday being free to moveaxially andradialy. The plateis releagd from this
initial shapeand allowed to vibrate. Various axisymmetric natural modesof the plate are excited
dependhg uponthe initial deformation.

The plateis allowed to vibratein a vacuumandalsowith a sem-infinite column of fluid on one
side of that plate. The natual frequendes of vibration of this plate both with and without the liquid
aregiven in Reference28. In the currentwork, only the axisynmetric modesare beinginvestigated.

Theplateis mace of 17-4 stainlesssteelwith a Young’s moduus of 1960 GPa,a Pois®n’sratio of
0-3 anda densityof 7772kg m 2. It hasa thicknessof 4-0 cm anda radius of 10 m.

(©)1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1433-14481997)



1442 G.P.WREN ET AL.

Figure 1. Vibration of a flat plate. Initial deformationof flat platein orderto measurdrequencyof first four axisymmetric
modes(left). Initial deformationmultiplied by 10 (right). Half of cross-sedon of plateis shown

4.1.1. Vibration of a flat platein a vacuum According to Reference28, the frequenaes of the first
axisymmetric modesof the plate vibrating in a vacuumare 48, 288, 718 and 1338 Hz. In orderto
excite thesemodes of vibration, the plateis initially deformedandreleagd.

The motion of the cente point of the plateduring20 msandthe datafrom a fast Fouriertransbrm
(FFT) of the motion of this point over a time period of appraimately 0-4 s are shownin Figure 2.
The motion of the platecentrepoint during the spant =0-35—-0-37 sis representatie of the motion of
that point during the entire simulation. The displacenent of the plate centrepoint at t=0-0 s is
0-006 m, so the amgitude of the plate vibrationsis not diminishing over time.

The computednaturalfrequendes of thefirst four axisynmetric modes, asshownin Figure2, are
49, 295,732 and 1348 Hz. All computea resuts arewithin 2-4% of the theaetical resuts.

0.006 T T T T T T T T T 0.002 T T T T T T T T T
0.0018 g
0.004
0.0016 |- E
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0.002
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Figure2. Vibration of a flat platein a vacuum.Motion of centrepoin of plate (left). Frequencyspectrmm of plate centrepoint
motion over 0-4 s (right). Plateradius1 m, platethickness4 cm
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4.1.2. Vibration of a flat plate with a fluid on one side. The plate was also allowed to vibrate
with a fluid on oneside of it. The frequencyof the first axisymmetric mode of this fluid—gtructure
problemis given in Reference30. An unstructued meshfor the fluid wasgeneragd usingthe same
mesh geneator as above.The meshconsiss of 1968 nodesand 3774 elemants. The fluid usedis
XM46, a liquid mongoropellantbeing studiedby the U.S. Army for possble usein future field
artillery wegoons. The densty of XM46 is 1430kg m . The values for equatim (9) are
K, =5-35 GPaandK, =9-11. According to Reference30, the frequeng of the first axisymmetric
modeis 20 Hz.

In simulaing this problem, the oscilation of the platedampedbutfairly quickly; seeFigure 3. This
is dueto propagationof theinitial energyof the sysem out of the conputationaldoman throughthe
liquid. In the physical problem, assunng the fluid domainextendsto infinity, the initial potential
enegy storedin the deformed plateeventially all propagagsto infinity through thefluid. An FFT of
the curvein Figure 3 shows a strongfrequeny at 19-8 Hz and a wedker frequencyat 194 Hz, the
computednatual frequenciedor the first two axisynmetric modes.The computel frequencyof the
first modeis within 1% of the expectedvalue.

Remak. The vibrating flat plate was alo studiedwith a coarserplate mesh(250 nodesand 394
elements,with threenodesacrassthe platethickness)anda coaserfluid mesh(597 nodesand 1087
elements).For the plate vibrating in a vacuumthe conputednaturalfrequendes were 49, 305, 759
and 1397 Hz, all within 6% of the analyticd resuts. For the plate with a fluid on one side the
computednaturalfrequeny was 18-3 Hz, within 8-5% of the expedted value.

4.2. Vibration of a movingmectanical corrponent

This problemwas chosento testthe featues of the fluid—gructureinteraction model. Again the
problem is assumedo be axisymmeric. There is a fixed, rigid circular cylinder and a moving,
defomable piston surroundng it; seeFigure 4. Thereis a greasdayer betwee the piston andthe
outer wall to preventcontactbetweenthe surface. Sincethe greasdayer only needsto be 0-15 mm
thick, relatve to a pistonouterradiusof 3-75 cm, the greasdayer is negkctedin the calculatons.
The greaselayer, however,imposes the presurein the chamberonto the outerface of the piston.In
orderto accountfor this, the presurewhich is imposel at thefluid outflow bounday is alsoimposel
onto the outerface of the piston.
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Figure 3. Vibration of a flat plate with fluid on oneside.Motion of centrepint of plate
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Figure 4. Vibration of a moving mechanicakomponentCross-sectiomf domain(greasdayer thicknessnot drawnto scale)

XM 46 flows in throughthe bounday at the left end of the domain,throuch the orifice at the right
endof the pistonandout througha circular hole in the right-handboundary Unstucturedmesesare
usedfor boththe fluid andpistonproblens, againgeneatedusingthe AHPCRC meshgenerabr. The
initial meshfor the fluid andthe meshfor the pistonare shownin Figure5. The mes of the piston
consbtsof 1382nodesand2570elementsandtheinitial fluid mes consstsof 2489nodesand4696
elements.

The left end of the pistonis held fixed and the computaions start. The piston begns to vibrate
owing to the pressurdorcesacting uponit. Usingthis asaninitial condition,theleft endof the piston
undegoesa known sinusoidalmotion with an amplituce of 0-015m and a frequencyof 3 kHz.
Assuming no deformation of the pistonfor a moment the clearancebetwea the pistonfaceandthe
rigid cylinder endin the initial configuationis 0-5 m, which is alsothe maxmum clearanceasthe
pistonis moved.The minimum clearance,still assunng rigid motion of the piston,is 0-002 m. With
such a large difference betweenmaximum and minimum clearances, the meshspanningthe gap
betwea the piston and the cylinder is deformed during the simulation. To prevent excesive
distottion, a new mes is generatd periodically during the stimulation. The AHPCRC mesh
geneator is usedto generat the new medes.
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Figure5. Vibration of a moving mechanicacomponeh Meshof piston (left) andfluid mesh(right)
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The motion of the pistontip, the point on the pistonwherethe radiusis the smallestrelativeto the
left endof the piston,waschos& asa meaureof the deformation of the piston. This relaive motion
is shown in Figure 6 along with the imposel motion on the left end of the piston. Immediately
preedingthe imposel sinusoidalmotion, animpulsivemotionis imposel to excite vibrationsof the
piston.In Figure 6 the initial relative motion is very oscillatory owing to this excitation. Most of the
osclilationsdampout quickly, leavinga few strongfrequendes. The datafrom an FFT of thisrelaive
motion is shownin Figure7. Therearelarge 3 kHz oscillatons, cause by the forcing function, and
also oscillatiors near6, 9, 12 and15 kHz, all of which areovertone of theforcing frequeng, caused
by theinteraction with theliquid. The oscillatiors near13-5 kHz indicate that 13-5 kHz is probaly a
natual frequencyof the piston.

The velocity vectors and Mach numberdistributon are shown in Plate 1. The times shown,
t =10, 1-08,1-17, 1-25 and 1-33 ms, spanoneperiodof the forcedmotion of the left of the piston.

4.3. Gaslmpingingon a Liquid

The combusion ratein the RLPG is highly relatedto the dropletsizesformedin bothinitial and
final ignition processesDroplet formation medanisminvolvedin theinitial ignition processareroll
wave, wave undercut bubbke burstand liquid impingment. In eachmechansm, very complicated
gas—iquid interactions occurwhich resultin an unstableinterfacebetweea the gasand liquid.

In theinitial ignition procesof the RLPGthe droples areformedpredominany by roll waveand
wave undercutmechansms.In thesemechamsmsa sufficiertly high gas velocity makesthe gas—
liquid interfaceunstabé andwavesappearDropletsareformedin theregionswhere the shearforces
are largerthanthe surfacetension Therdore one can split the wave undecut medanisminto two
parts,i.e. wave formation and dropletformation.

The objective of this problem is to demorstratethe computationalcapability of simulating wave
formation. This capalility will be usedto obtain a betterunderstandingpf the fundamental physics
behind wave formation causel by the wave undecut mechanismand the subsguentformation of
droplets. In this problem,incompressibé gaswith a velocity of 50 m s~ atanangk of 30° from the
vertical hits flammalte liquid which is initially atrest.Initially the liquid occupieshe lower quarter
of a cubewith dimensons 10 cm on eachside Theliquid is assumedo be 45-3 timesheavierthan
the gasandthe Reynoldsnumber basedon the cubesize, injection velocity andviscosity of the gasis
10°. The computaion is carriedout on the pardlel supecompute Thinking MachinesCM-5 usinga

0.05

cm
=)
=

M AV AT AT AR WaATN
oo A A A Y
N T
sl YT T
welb bV

uIFRIRRHERIAR TR IAY /A
R R RN

-0.3
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035
Time(s)

cm

Figure6. Vibration of amovingmechanicatomponentimposedmotionon left endof piston(bottom).Motion of tip of piston
in orifice, relativeto left end of piston (top) (negativeindicatesmotion towardsfixed block)
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Figure 7. Vibration of a moving mechanicalcomponentFrequencyspectrumof motion of pistontip relative to left end of
piston

strucuredmesh madeof 50 X50 X 50 hexahelral elementsThetime incrementwassetto 0-05 and
in everytime stepapproximagly 10° coupled non-linearequatons are solved to obtan the presure
andvelocity fields. To keeptrack of the interfacebetweenthe gasand liquid, we usean autanatic
med-moving schemedo movethefinite element mesh.The me$-moving schemewhich is basedon
the linear elasticty equaions, is descibed in Reference20. Using this schememore than 400,000
equatons are solvedto updatethe finite elementmeshat everytime step.

Plate 2 shows the velocity field in the vertical, central plane (left picture) and the presure
distribution on the surfaceof theliquid (right picture)att =0-05 s. Figure 8 shows the surfaceof the
liquid att=0-0 s (left picture) andt =0-075 s (right picture).

5. CONCLUSIONS

The deformabde-spatiaJdomair}/stabilized-spacetime(DSD /SST)formuIation hasbeensucceasfully
appied to problemsinvolving fluid—gructureinteractons and two-fluid interfaces. Specifically, we
havedemonstatedthe capabilty to modelthe coupledbehaviourof a pistonbehavingasan elastic
solid anda compresible fluid in which the computdional domain mustbe deternined as part of the
calculation as it changesin size and shape Although few data are avaiable for validation, the
reliability of the methodis first demonstatedby comparisonwith a probleminvolving a flat plate.In

Figure 8. Gasimpinging on a liquid. Surfacediscretizatio of liquid att=0-0 s (left) andt=0-075s (right)
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addtion, we havemodelked the interection at the interfaceof anided gasanda barotrgic fluid in
which the gasimpingeson the liquid.

The modeling capalilities discussd are of interest to the U.S. Army in the investigation of
physical behavour encouneredin advaned weaponssystens. Since expeimental diagnosticsare
often diffi cult or impossibleat the extrenesof condtions encouneredin guns,high-fideity modds
often provide the primary meansof undestandiry the dominar physical mechansms at gun
presuresandtempeantures.
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